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[Abstract] The blood-brain barrier (BBB) prevents unregulated substance exchange between the central 
nervous system and the blood, while providing highly regulated transport of nutrients and tonic factors essential to 
brain metabolism. A group of carriers, transporters, and receptors is utilized by endothelial cells of the BBB to aid 
the influx and efflux of nutrients and metabolic wastes, and their function is subject to changes during metabolic 
disorders such as diabetes mellitus and obesity. This regulated barrier function of BBB is essential for maintaining 
the normal metabolism of the brain and transduction of metabolic signals from the periphery. As such, disruption 
of the BBB nutrient/hormone transport system has been proposed to be major contributors of many neurological 
diseases.
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REVIEWS

1  Introduction 
The brain is the central organ of neuronal 

activities, and its proper function relies on 
a homeostatic environment. The blood-brain barrier 
is a specialized structure of the brain blood vessels, 
consisting of endothelial cells, pericytes, astrocytes, 
and basement membranes[1]. These cellular and non-
cellular components act together to isolate the brain 
parenchyma from peripheral circulation, avoiding 
the uncontrolled entrance of neurotoxins, pathogens 
and immune cells while allowing strictly regulated 
transport of essential nutrition and hormones[2]. 
To achieve this function, the endothelial cells 

of the BBB have high expression levels of tight 
junction proteins, a low level of transcytosis, and 
low expressions of adhesion molecules, all of 
which minimize unspecialized transport of blood 
substances[2-3]. On the other hand, endothelial cells 
express a group of carrier proteins, membrane 
receptors, and influx and efflux transporters, 
providing highly regulated transport of nutrients and 
tonic factors essential to brain metabolism[4].

As an organ of extensive energy demand, the 
brain requires continuous nutrient transport from 
peripheral circulation. The presence of BBB blocks 
free penetration of nutrients and hormones, and thus 
has a major role in the regulation of brain function. 
Disruption of BBB nutrient/hormone transport, 
along with dysfunction of receptors and insufficient 
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2.2  Lactate and ketone bodies

Lactate has been previously considered as 
a metabolic waste and the consequence of insufficient 
oxidation in skeletal muscles[14]. However, recent 
studies have set its role as an alternative energy 
source[15] and a signaling molecule in regulating 
complex neurological behaviors[16-17]. Lactate is 
transported to the brain via the monocarboxylate 
carrier 1 (MCT1) in a bi-directional fashion[18]. MCT1 
is also capable of transporting ketone bodies into the 
brain, which can be used as an alternative energy 
source when glucose supply is limited in situations of 
prolonged fasting[19-20].

2.3  Nucleotides

The brain has little capacity of synthesizing 
purines and pyrimidines de novo, which gives great 
significance to nucleotide transport systems in the 
BBB[21-22]. The nucleotides in the brain are transported 
by two systems, that is the bidirectional processes 
driven by chemical gradients via the equilibrative 
nucleoside transporter (ENT) 1 and ENT2 transporters, 
and the unidirectional concentrative processes driven 
by sodium electrochemical gradients via the CNT2 
transporter[22]. Because of a relatively high Km 
of ENT1 and ENT2 compared with CNT2, it is 
likely that CNT2 plays the major role in nucleotide 
transport in physiological conditions, and ENT1 
and ENT2 are only more active when peripheral 
nucleotide is at a very high level, for example after 
an experimental supplementation[23-24].

2.4  Lipids

2.4.1  Cholesterol

Cholesterol is the major component of CNS 
myeline, and the brain consists of around 25% 
of all cholesterol weight in the body[25]. Due to 
the prevention of lipoprotein uptake by the BBB, 
cholesterols cannot be transported from the 
peripheral but are mostly synthesized de novo, 

downstream signaling have been proposed to be 
major contributors of many neurological diseases[5].

In this review, we summarize the routes that 
essential nutrients and hormones utilize to enter the 
brain across the BBB, as well as the routes through 
which metabolic wastes efflux from the brain. 
Finally, we briefly discuss changes of the transport 
function of BBB in the most common metabolic 
diseases, diabetes mellitus and obesity.

2  Nutrients and hormones transport 
across the BBB during physiological 
condition

2.1  Glucose 

The brain is an organ of high energy demand 
and consumes about 20% of total glucose in the 
body[6]. In periphery organs, glucose from the 
blood enters interstitial fluid from the ultrafiltrate 
produced in the capillary beds, and its entry to cells 
is insulin-dependent[7]. In contrast, direct glucose 
leakage from the capillary is eliminated by the 
tightly regulated barrier function of BBB. Instead, 
glucose is transported across the BBB via an insulin-
independent glucose transporter expressed on brain 
endothelial cells, GLUT-1[8]. GLUT-1 transports 
glucose in a saturable, but not active fashion (energy 
independent), and transports 50 times more glucose 
to the central nervous system (CNS) than otherwise 
conveyed to meet the high energy demand from 
neuronal activity[9]. Similarly, the uptake of glucose 
by CNS cells is largely independent of insulin 
signaling. Insulin insensitive glucose transporters, 
including GLUT-1 (astrocytes), GLUT-3 (neurons), 
and GLUT-5 (microglia) direct the glucose transport 
to various types of CNS cells[10]. It should be noted 
that glucose transport mediated by the sodium-
dependent glucose transporter 2 (SGLT2), have 
also been proposed[11-12], although it is expressed at 
a lower level on endothelial cells compared with 
GLUT-1, suggesting its relatively minor role in 
glucose transportation to the brain [13].
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insulated from circulating cholesterols[26-27]. Glia 
cells, especially oligodendrocytes and astrocytes, 
are the major sites of cholesterol synthesis[28]. An 
efflux of astrocytic cholesterol is mediated by the 
ATP-binding cassette transporter 1, and is shuttled to 
neurons as Apolipoprotein E (apoE) and cholesterol-
containing lipoproteins[25]. 

2.4.2  Fatty acids

The exact mechanism for fatty acid transport 
through the BBB remains controversial. Two 
possible models of fatty acid transportation to the 
CNS have been proposed. The most straightforward 
method would be passive diffusion from the 
endothelial plasma membrane in a "flip-flop" way[29]. 
That is to say, fatty acids diffuse to the exofacial 
leaflet of the plasma membrane and are then flipped 
to the cytofacial leaflet, ultimately entering the cell 
for use[30]. The capacity of this transportation method 
is limited, possibly due to the thermodynamic 
challenge resulting from the negative charge carried 
by carboxylic acids[31-32]. A second model is through 
protein-mediated transport, such as fatty acid 
transport proteins (FATP) and fatty acid translocase/
CD36[33]. FATPs, also known as the solute carrier 
family 27, contain the members FATP1-6, with the 
most abundant expression of FATP1 and FATP4 in 
brain microvascular endothelial cells[34]. Knockdown 
of either FATP1 or FATP4 significantly reduced 
transport of long-chain fatty acids across human 
brain microvascular endothelial cells (HBMEC) 
in vitro, suggesting a predominant role of carrier-
mediated transport[33]. Knocking down of fatty acid 
translocase/CD36, on the other hand, decreased 
transport of short-chain, medium-chain, and long-
chain saturated and unsaturated and very long-chain 
fatty acids, suggesting its more general role in fatty 
acid transport[33].

Docosahexaenoic acid (DHA), an omega-3 fatty 
acid essential for brain development and cognitive 
function, has a unique route for transport across the 
BBB. With the aid of major facilitator superfamily 

domain-containing protein 2A (Mfsd2a), a member 
of the major facilitator superfamily, DHA is 
transported in the form of lysophosphatidylcholine, 
but not unesterified fatty acid[35-36]. Deficiency 
of Mfsd2a results in a significant decrease in 
the level of DHA in the brain, in company with 
microcephaly, neural loss, cognitive deficits and 
abnormal behavior[35]. Mfsda2 is also critical for the 
formation and function of the BBB via regulating 
transcytosis[37-38], which could also affect the 
transport of other key nutrients to the CNS[39].

2.4.3  Amino acids

Amino acids are building blocks of protein 
synthesis and have a particular role in regulating 
neurotransmitter synthesis and release in the brain[40]. 
Amino acids are transported with the aid of a group 
of solute carrier family members (SLCs) with 
preferences[2]. CAT1 and CAT3 transport cationic 
L-amino acids, such as Lys and Arg, while the L 
amino acid transporters 1 (LAT1, or Slc7a5) and 
LAT2 (Slc7a8) transports large neutral amino acids 
such as Phe, Trp, Leu, and His[41-42]. Deficiency 
of LAT1 leads to an abnormal amino acid profile 
in the brain and its mutation is associated with an 
autism spectrum disorder in human patients[43]. 
Glutamine can be transported to the brain with the 
help of SNAT5.

2.5  Hormones

2.5.1  Leptin

Leptin is a peptide hormone produced by 
adipose tissues. Its target organ lies in specific leptin-
receptor-expressing neurons in the arcuate nucleus 
of the hypothalamus, with the main functions of 
controlling appetite, body weight, neuroendocrine 
functions, and glycemia[44-45]. Leptin is transported 
to the CNS in a saturable and receptor-dependent 
process[5] and its entry path to the CNS include across 
the blood-brain barrier, the brain-cerebral spinal 
fluid (CSF) barrier, and tanycyte endocytosis in the 
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median eminence in the basal hypothalamus[46-49]. 
Because of the low diffusion rate of leptin in the 
brain tissue, leptin entered from different sites seems 
to have unique functions on specific regions of 
the brain[5]. Mice with selective deletion of leptin 
receptor (LepR) in brain microvascular endothelial 
and ventricular epithelial cells present aggravated 
obesity when fed with a high-fat diet compared with 
wild type controls because of high sensitivity in 
food reward[50]. Interestingly, an obesity phenotype 
is not observed when fed with a normal diet[50]. 
Leptin entered via the tanycytes endocytosis path, 
in contrast, controls homeostatic lipid metabolism 
and pancreas function[51]. In the physiological 
circumstance, the rate of transport of leptin to the 
CNS is affected by blood glucose, triglycerides, 
adrenaline and probably estrogens[52-53].

2.5.2  Insulin

Although the transport and usage of glucose is 
independent of insulin in the CNS, insulin still plays 
important roles in the CNS[8]. Brain insulin acts 
on the control of appetite, adipose tissue lipolysis, 
hepatic triglyceride secretion, and branched-chain 
amino acid metabolism[7]. Insulin crosses the BBB 
by a saturable mechanism. However, whether its 
transportation requires binding with its receptor 
remains controversial. In a mouse model genetically 
deficient in endothelial insulin receptor, the CNS 
level of insulin, the rate of transport of insulin, 
and the saturable fashion of its transportation is 
maintained, albeit a decrease in binding of insulin to 
endothelial cells[54]. However, in an in vitro model 
of BBB, pretreatment of monolayer of isolated brain 
endothelial cells by the insulin receptor blocker S-961 
significantly decreased its uptake and transcytosis[55].

2.5.3  Thyroid hormones

The thyroid hormone, T3 and T4, are iodinated 
amino acid hormones produced and secreted by the 
thyroid gland. T3 is the major functional form of 
thyroid hormone and T4 can be transformed to T3 in 

periphery organs[56]. Upon binding with its nuclear 
receptors, T3 activates tissue-specific transcriptional 
changes, which is critical for normal development, 
growth and metabolism[57]. Thyroid hormone is 
especially important for the developing brain, as 
children who develop under the condition of severe 
thyroid hormone deprivation suffer from severe 
mental retardation, deaf-mutism, spastic diplegia and 
extrapyramidal rigidity after birth[58].

The transport of T3 across the BBB is mediated 
by the solute carrier MCT8[59-60]. Deficiency in 
MCT8 in a mouse model resulted in a selective 
defect in T3 uptake, while T4 accumulation is 
maintained, suggesting a different transport system 
of T4[61]. T4 is transported via the T4 transporter 
Oatp1c1 in rodents. In the presence of T3 deficiency, 
the activity of type 2 iodothyronine deiodinase, the 
enzyme which converts T4 to T3 in astrocytes in 
the brain, is enhanced to compensate for the lack of 
T3[62]. Oatp1c1, however, is expressed at a very low 
level in human and monkey brains, indicating that 
T4 transport and conversion in the brain might not 
be sufficient to compensate for MCT8 loss in human 
as in rodent models[63].

2.5.4  Insulin-like growth factor 1

Insulin-like growth factor 1 (IGF-1) is a peptide 
growth factor produced in the liver[64-65]. IGF-1 has 
been shown to have multiple effects on the brain, 
including brain vessel growth, adult neurogenesis 
and neuronal excitability. IGF-1 is also transported 
to the brain through multiple routes. IFG-1 can be 
uptaken to the CSF in a saturable fashion independent 
of its receptor[64]. Instead, this process is mediated 
by the endocytic receptor megalin/low-density 
lipoprotein receptor-related protein-2 (LRP2)[66]. 
IGF-1 can also be transported across the BBB, 
and this process is tightly related to neurovascular 
coupling[67]. Upon increased neuronal activity, 
glutamate released by neurons activates vasodilation 
resulting in increased availability of serum IGF-1, 
and increasing the activity of metalloprotease 9 
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to release IGF-1 from its serum binding protein, 
allowing its entrance to the CNS[67]. The brain 
microvascular endothelial cells express high levels 
of IGF-1 receptor IGF1R[68]. However, there is no 
direct evidence for receptor-mediated transcytosis of 
IGF-1 via IGF1R across the BBB.

3  Efflux of metabolic wastes from 
brain during physiological condition

3.1  Cholesterol 

Because cholesterols are mainly synthesized 
in the brain de novo, an export mechanism must 
exist to remove excess cholesterol and achieve 
its active balance in the brain. A small amount of 
excessive cholesterol can be excreted from the 
BBB in the form of apoE-bound cholesterol via the 
CSF at the rate of 1 to 2 mg per day, or quantitively 
more significant, as the cholesterol metabolite 
24S-hydroxycholesterol[69-70]. Unlike cholesterol, 
24S-hydroxycholesterol can be excreted to the 
circulation via the solute carrier organic anion 
transporter family member 1B1 carrier expressed 
on endothelial cells[71]. 24S-hydroxycholesterol is 
an endogenous ligand for liver X receptors (LXRs)
in the brain, whose activation increase cholesterol 
release from astrocytes, and loss of these receptors 
results in neurodegenerative diseases[72]. These 
results suggest a dual role of 24S-hydroxycholesterol 
in regulating brain cholesterol release and export.

3.2  Amino Acids

Amino acids in the brain are 10 to 20 times 
lower than in the plasma, with the exception of a 
similar concentration of glutamine[73]. Thus, the 
brain-to-blood transport of amino acid against 
concentration gradient depends on Na+-dependent 
systems expressed on the abluminal side of 
endothelial cells[73]. These transporters include the 
system LNAA for large neutral amino acids (Leu), 
system A for small non-essential neutral amino acids 
(Pro, Gln, Ser, Asn, His, and Ala), system ASC for 

transport of Ala, Ser and Cys, system N for nitrogen-
enriched amino acid transport (His, Gln and Asn), 
and the excitatory amino acids transporters(EAATs) 
that transports Asp and Glu[74]. Among these 
transporters, the EAAT1, 2, and 3 transporters for 
glutamate is especially important, which function to 
maintain the glutamate levels and avoid excessive 
neuronal excitation and neurotoxicity[19,75]. Excessive 
accumulation of glutamate in the brain has been 
implicated in several neurodegenerative disorders, 
including Alzheimer's disease (AD), Huntington's 
disease, and amyotrophic lateral sclerosis[76].

3.3  Amyloid β-peptide

Amyloid β-peptide (Aβ) is a group of 36-
43 amino acid peptides produced from the 
heterogeneous cleavage of the amyloid precursor 
protein (APP)[77]. Aggregation and deposition of 
Aβ in amyloid plaque in the brain is a hallmark of 
AD[78]. In physiological conditions, Aβ is transported 
bi-directionally across the BBB via various 
transporters. Advanced glycosylation end product-
specific receptor (RAGE) has been reported to be an 
influx transporter of Aβ from the periphery, while 
the transporters LRP1, LRP2 and ABC subfamily B 
member 1 (ABCB1) mediates its efflux[79-81]. Aging 
significantly reduces the expression of LRP1 and 
ABCB1 on brain endothelial cells[82], which could 
potentially perturb Aβ efflux and ultimately cause Aβ 
deposition in the brain and AD.

4  BBB changes during metabolic 
disorders

4.1  Diabetes mellitus (DM)

Diabetes mellitus has a profound effect on brain 
vascular function. Patients with DM have a 2.5-fold 
more risk of developing ischemic stroke, and a 1.5-fold 
more risk of developing vascular dementia, indicating 
potential deficits in microvascular function[83-85]. 
An increase in BBB permeability has been observed 
in both patients with type 2 diabetes and in rodent 



Journal of Holistic Integrative Pharmacy, Vol.3  Issue 1  March 202212

models, as indicated by postcontrast enhancement 
of the brain parenchyma and increased ratio of CSF 
to serum albumin level[86-87]. This dysfunction in 
BBB integrity has been associated with pericyte 
glucotoxicity. The increased glucose uptake by 
pericytes induces overproduction of reactive oxygen 
species, and therefore leading to pericyte degradation 
and BBB disruption[88]. Chronic hyperglycemia 
also includes accumulation of advanced glycation 
end products (AGE) and the upregulation of its 
receptor (RAGE) on microvascular endothelial cells, 
pericytes and astrocytes[84]. RAGE activated the 
NF-κB pathway, inducing neuroinflammation and 
further impairs BBB function[89]. Hyperglycemia also 
directly acts on endothelial cells by downregulating 
the tight junction protein ZO-1 and occludin, and 
upregulating the adhesion molecules intercellular 
adhesion molecule 1 (ICAM-1) and vascular cell 
adhesion protein 1 (VCAM-1), which potentially 
facilitates the infiltration of immune cells[90-91] (Fig. 1).

DM also interferes with the metabolic condition 
of the brain. Upon hyperglycemia, the glucose 
transporter activity on BBB is downregulated, in 
association with a parallel decrease in cerebral blood 
flow[92]. Correspondent with the increased level of 
insulin in the circulation in T2DM, DM animals also 
have an increased transport of insulin to the brain. 
However, the capability of insulin to promote leptin 

transportation is impaired[52]. Disruption of amino 
acid metabolism in DM has also been reported 
and associated with the development of diabetic 
neuropathic pain[93]. The level of amino acids 
which are the precursors of neurotransmitters, 
i nc lud ing  L- t ryp tophan ,  L -h i s t id ine  and 
L-tyrosine, are downregulated[93]. Whether these 
changes are related to altered transporter function 
remains unknown.

Table 1  Transporters for various nutritions on the BBB

Substrate Transporter
Influx

Glucose GLUT-1
SGLT2

Lactate MCT1
Ketone bodies MCT1
Nucleotide ENT1, ENT2

CNT2
Lipids

Cholesterol de novo synthesis
Fatty acids FATP1, FATP4

fatty acid translocase/CD36
MFSD2A (DHA)

Amino acid CAT1, CAT3 (System y+)
LAT1, LAT2 (System LNAA)
SNAT5 (System N)

Hormones
Leptin LepR
Insulin IR (can occur independent of its 

receptor)
Thyroid Hormones

T3 MCT8

T4 Oatp1c1

Insulin like Growth factor 1 LRP2

Efflux

Cholesterol Oatp2(24S-hydroxycholesterol)

Amino Acids LAT1, LAT2 (System LNAA)

SNAT1, SNAT2 (System A)

SNAT3, SNAT5 (System N)

ASCT1, ASCT2 (System ASC)

EAAT1, EAAT2 (System EAAT)

Amyloid β-peptide Abcb1(P-gp)

LRP1

LRP2

Fig. 1  BBB change in diabetes mellitus
Diabetes mellitus significantly impairs the barrier function of 
the BBB by inducing pericyte degradation and downregulating 
the expression of tight junctions on endothelial cells. In the 
meantime, the endothelial cells express higher levels of adhesion 
molecules ICAM-1 and VCAM-1, and decrease the activity of the 
glucose transporter GLUT-1. The BBB also transports less amino 
acid and more insulin to the brain. 
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4.2  Obesity

The BBB participates in the pathogenesis of 
obesity through mediating resistance to peripheral 
leptin. Leptin enters the brain in a saturable fashion, 
and thus the relationship between serum and CNS 
leptin levels forms a hyperbolic curve[94]. In the 
linear range of this curve, an increase of serum 
leptin induces a proportional increase in CNS leptin. 
However, in conditions where serum leptin level is 
so high that has surpassed the linear range, transport 
of leptin to the CNS is saturated and cannot respond 
to the further increase in the serum, resulting in a 
relative hypo-leptin level in the brain. In fact, obese 
individuals have a more than 3-fold increase of leptin 
in serum, and a lowered CSF/serum ratio compared 
with lean individuals, further supporting the idea 
of transport deficiency of leptin in obesity[95-96].  
Administration of leptin directly to the CNS, rather 
than injection to the peripheral circulation, has 
a profound dose-dependent decrease in food intake 
and body weight[97]. Increased level of triglycerides, 
which appears in both starvation and obesity, also 
inhibits leptin transport to the brain[98]. 

Obesity also alters nutrition transport to 
the brain. A transient high-fat feeding induced a 
reversible downregulation of GLUT-1 in BBB 
endothelial cells, reduced brain glucose uptake, 
but could be restored during prolonged high-
fat diet feeding[99]. Obesity also decreases the 
transport of insulin to the brain, but increases the 
transport of free fatty acids[100]. A high-fat diet 
induced obesity model revealed a downregulation 
in cerebral microvessels relating to cell cycle 
regulation, cell metabolism and cytoskeleton 
associated protein[101]. The expression of a group 
of transport proteins, including clathrin light chain 
B, voltage-dependent anion-selective channel 
protein 3, dihydropyrimidinase-related protein 1 
and 2, EF-hand domain-containing protein D2, 
and far upstream element-binding protein 2 is also 
decreased[101].

5   Conclusion and outlook

The BBB constitutes an interface between the 
peripheral circulation and CNS environment. The 
barrier function of BBB isolates the brain from 
direct peripheral nutritional signals. By highly 
selective transport of nutrients and hormones, the 
BBB plays an essential role in maintaining the 
normal metabolism of the brain and transduction of 
metabolic signals from the periphery. The BBB itself 
is susceptible to injury in metabolic diseases such 
as diabetic mellitus, and is an active participant in 
the pathogenesis of other metabolic disorders such 
as obesity. The specific changes of the transport 
function of BBB in metabolic diseases have not been 
fully understood, and warrant further studies.

Several questions remain to be answered in 
this field. When the internal environment is altered 
in metabolic disorders, is the presence of BBB 
sufficient to maintain the CNS homeostasis as in 
normal conditions? If not, how is the function of the 
BBB compromised and what can we do to reverse 
this dysfunction? In metabolic disorders, whether 
and how BBB dysfunction affects the metabolism 
and thus the functions of the cells in the brain 
tissue, including neurons, astrocytes, microglia, 
oligodendrocytes, etc.?

In the future development of novel therapeutic 
approaches towards obesity and diabetes, the 
maintenance of BBB function could be a potential 
target to avoid CNS complications. In diseases 
such as obesity, the transport capability of certain 
hormones across the BBB plays a major role in their 
pathogenesis. Targeted brain delivery of certain 
substrates, which can be modified to increase their 
passage across the BBB, constitutes a potential 
therapeutic approach for metabolic diseases.
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